«Рассмотрено»	«Согласовано»	«Утверждено»
Руководитель ШМО	Заместитель директора	Директор МБОУ «СОШ №
	по УВР МБОУ «СОШ № 3»	3»
/Марон И.В./	/Бочкарёва Е.В./	
		/Шершнёва В.Б./
от «28» августа 2019 г.	«»2019 г.	Приказ № от
		« » 2019 г.

РАБОЧАЯ ПРОГРАММА ПЕДАГОГОВ

Посмаг Нины Петровны, Марон Инны Викторовны, Деулиной Людмилы Федоровны,

курса алгебры 7-9 классы

Пояснительная записка

Рабочая программа составлена на основе авторской рабочей программы Г.В.Дорофеева по учебному предмету «Алгебра 7-9 классы» (сост. Т.А.Бурмистрова, изд. «Просвещение», 2011).

Место учебного предмета в учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации рабочая программа в 7 рассчитана на 102 часа (3 ч в неделю), в 8 классе — на 102 часа (3 ч в неделю).

Основные цели и задачи

Цели обучения математики:

в направлении личностного развития:

- развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
- формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
- формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
- развитие интереса к математическому творчеству и математических способностей;
 - в метапредметном направлении:
- формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
- развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
- формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
 - в предметном направлении:
- овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
- создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Задачи обучения:

- приобретение математических знаний и умений;
- формирование представления о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления;
- формирование представления о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;

- овладение обобщенными способами мыслительной, творческой деятельностей;
- учиться поиску, систематизации, анализу и классификации информации, используя разнообразные информационные источники, включая учебную справочную литературу, современные информационные технологии;
- освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной.

Личностные, метапредметные и предметные результаты освоения конкретного учебного курса

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

1) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений. осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;

- 2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- 3) формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими о образовательной. общественно полезной, учебно- исследовательской, творческой и других видах деятельности;
- 4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- 5) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- 6) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- 7) креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
- 8) умение контролировать процесс и результат учебной математической деятельности;
- 9) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждении;

метапредметные:

личностные:

- 1) умение самостоятельно планировать альтернативные нули достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- 2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
- 3) умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
- 4) осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

- 5) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
- 6) умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
- 7) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;
- 8) формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
- 9) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- 10) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 11) умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- 12) умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 13) умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
- 14) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- 15) понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
- 16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- 17) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметные:

- 1) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
- 2) владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- 3) умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

- 4) умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
- 5) умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
- 6) овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
- 7) овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;
- 8) умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

7 – 9 класс

РАЦИОНАЛЬНЫЕ ЧИСЛА

Выпускник научится:

- 1) понимать особенности десятичной системы счисления;
- 2) владеть понятиями, связанными с делимостью натуральных чисел;
- 3) выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
- 4) сравнивать и упорядочивать рациональные числа;
- 5) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
- 6) использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчеты.

Выпускник получит возможность:

- 7) познакомиться с позиционными системами счисления с основаниями, отличными от 10;
- 8) углубить и развить представления о натуральных числах и свойствах делимости;
- 9) научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ. ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Выпускник научится:

- 1) использовать начальные представления о множестве действительных чисел;
- 2) владеть понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

- 3) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;
- 4) развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ

Выпускник научится:

1) использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

- 2) понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
- 3) понять, что погрешность результата вычислении должна быть соизмерима с погрешностью исходных данных.

АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ

Выпускник научится:

- 1) владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
- 2) выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
- 3) выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
- 4) выполнять разложение многочленов на множители.

Выпускник получит возможность:

- 5) научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
- 6) применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

УРАВНЕНИЯ

Выпускник научится:

- 1) решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
- 2) понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- 3) применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными. Выпускник получит возможность:
- 4) овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- 5) применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

HEPABEHCTBA

Выпускник научится:

- 1) понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
- 2) решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
- 3) применять аппарат неравенств для решения задач из различных разделов курса. Выпускник получит возможность научиться:
- 4) разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
- 5) применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

основные понятия. числовые функции

Выпускник научится:

- 1) понимать и использовать функциональные понятия и язык (термины, символические обозначения);
- 2) строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
- 3) понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами. Выпускник получит возможность научиться:
- 4) проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
- 5) использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

Выпускник научится:

- 1) понимать и использовать язык последовательностей (термины, символические обозначения);
- 2) применять формулы, связанные с арифметической и геометрической прогрессий, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

- 3) решать комбинированные задачи с применением формул п-го члена и суммы первых п членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;
- 4) понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую с экспоненциальным ростом.

ОПИСАТЕЛЬНАЯ СТАТИСТИКА

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

СЛУЧАЙНЫЕ СОБЫТИЯ И ВЕРОЯТНОСТЬ

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе, с помощью компьютерного моделирования, интерпретации их результатов.

КОМБИНАТОРИКА

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Тематическое планирование

Номер	Тема раздела (модуль)	Количество
главы		часов
1	Дроби и проценты	11
2	Прямая и обратная пропорциональность	8
3	Введение в алгебру	9

4	Уравнения	11
5	Координаты и графики	9
6	Свойства степени с натуральным показателем	9
7	Многочлены	17
8	Разложение многочлена на множители	17
9	Частота и вероятность	5
	Повторение	6

8 класс

Номер	Тема раздела (модуль)	Кол-во
главы		часов
	Повторение курса алгебры 7 класса	3
1	Алгебраические дроби	23
2	Квадратные корни	17
3	Квадратные уравнения	20
4	Системы уравнений	18
5	Функции	12
6	Вероятность и статистика	5
	Повторение	4

9 класс

Номер	Тема раздела (модуль)	Кол-во
главы		часов
	Повторение материала 7 - 8 класса	3
1	Неравенства	19
2	Квадратичная функция	20
3	Уравнения и системы уравнений	25
4	Арифметическая и геометрическая прогрессии	17
5	Статистика и вероятность	8
	Повторение	10

Содержание курса.

No	Раздел (число часов по программе)
п/п	
1.	Дроби и проценты (11 ч)

Обыкновенные и десятичные дроби, вычисления с рациональными числами. Степень с натуральным показателем. Решение задач на проценты. Статистические характеристики: среднее арифметическое, мода, размах.

Основная цель — систематизировать и обобщить сведения об обыкновенных и десятичных дробях, обеспечить на этой основе дальнейшее развитие вычислительных навыков, умение решать задачи на проценты; сформировать первоначальные умения статистического анализа числовых данных.

В соответствии с идеологией курса данная тема представляет собой блок арифметических вопросов. Основное внимание уделяется дальнейшему развитию вычислительной культуры: отрабатываются умения находить десятичные эквиваленты или десятичные приближения обыкновенных дробей, выполнять действия с числами, в том числе с использованием калькулятора. Продолжается начатая в 6 классе работа по вычислению числовых значений буквенных выражений. Вычислительные навыки учащихся получают дальнейшее развитие при изучении степени с натуральным показателем; учащиеся должны научиться находить значения выражений, содержащих действия возведения в степень, а также записывать большие и малые числа с использованием степеней числа 10. Продолжается решение задач на проценты. Однако в этой теме рассматриваются более сложные по сравнению с предыдущим годом задачи.

Основное содержание последнего блока темы — знакомство с некоторыми статистическими характеристиками. Учащиеся должны научиться в несложных случаях находить среднее арифметическое, моду и размах числового ряда.

2. Прямая и обратная пропорциональности (8 ч)

Представление зависимости между величинами с помощью формул. Прямо пропорциональная и обратно пропорциональная зависимости. Пропорции, решение задачи с помощью пропорций.

Основная цель – сформировать представления о прямой и обратной пропорциональностях величин; ввести понятие пропорции и научить учащихся использовать пропорции при решении задач.

Изучение темя начинается с обобщения и систематизации знаний учащихся о формулах, описывающих зависимости между величинами. Вводится понятие переменной, которое с этого момента должно активно использоваться в речи учащихся. В результате изучения материала учащиеся должны уметь осуществлять перевод задач на язык формул, выполнять числовые подстановки в формулы, выражать переменные из формул. Особое внимание уделяется формированию представлений о прямой и обратной пропорциональной зависимостях и формулам, выражающим такие зависимости между величинами. Формируется представление о пропорции и решении задач с помощью пропорций.

3. Введение в алгебру (8 ч)

Буквенные выражения, числовые подстановки в буквенное выражение. Преобразование буквенных выражений: раскрытие скобок, приведение подобных слагаемых.

Основная цель – сформировать у учащихся первоначальные

представления о языке алгебры, о буквенном исчислении; научить выполнять элементарные базовые преобразования буквенных выражений.

В 7 классе начинается систематическое изучение алгебраического материала и данная тема представляет собой первый проход соответствующего блока вопросов.

Введение буквенных равенств мотивируется опытом работы с числами, осознанием и обобщением приемов вычислений. На этом этапе раскрывается смысл свойств арифметический действий как законов преобразований буквенных выражений, формируются умения упрощать несложные произведения, раскрывать скобки, приводить подобные слагаемые.

4. Уравнения (11ч)

Уравнения. Корни уравнения. Линейное уравнение. Решение текстовых задач методом составления уравнения.

Основная цель — познакомить учащихся с понятиями уравнения и корня уравнения, с некоторыми свойствами уравнения; сформировать умения решать несложные линейные уравнения с одной переменной; начать обучение решению текстовых задач алгебраическим способом.

Целесообразно, чтобы уравнение в курсе появилось как способ перевода фабульных ситуаций на математический язык. Такому переводу должно быть уделено достаточное внимание. Следует рассмотреть некоторые приемы составления уравнения по условию задачи, возможность составления разных уравнений по одному и тому же условию, сформировать умение выбирать наиболее предпочтительный для конкретной задачи вариант уравнения. Переход к алгебраическому методу решения задач одновременно служит мотивом для обучения способу решения уравнений. Основное внимание в этой теме уделяется решению линейных уравнений с одной переменной, показываются некоторые технические приемы решения.

5. Координаты и графики (10ч)

Числовые промежутки. Расстояние между точками на координатной прямой. Множества точек на координатной плоскости. Графики зависимостей y = x, y = x2, y = x3, y = x. Графики реальных зависимостей.

Основная цель — развить умения, связанные с работой на координатной прямой и на координатной плоскости; познакомить с графиками зависимостей y = x, y = x2, y = x3, y = x; сформировать

первоначальные навыки интерпретации графиков реальных зависимостей.

При изучении курса математики в 5-6 классах учащиеся познакомились с идеей координат. В этой теме делается следующий шаг: рассматриваются различные множества точек на координатной прямой и на координатной плоскости, при этом формируется умение переходить от алгебраического описания множества точек к геометрическому изображению и наоборот. Рассматривается формула расстояния между точками координатной прямой.

При изучения темы учащиеся знакомятся с графиками таких зависимостей, как y = x, y = x2, y = x3, y = x. В результате учащиеся должны уметь достаточно быстро строить каждый из перечисленных графиков, указывая его характерные точки. Сформированные умения могут стать основой для выполнения заданий на построения графиков кусочно- заданных зависимостей.

Специальное внимание в данной теме уделяется работе с графиками

реальных зависимостей – температуры, движения и пр., причем акцент должен быть сделан на считывание с графика нужной информации. Важно, чтобы учащиеся получили представление об использование графиков в самых различных областях человеческой деятельности.

6. Свойства степени с натуральным показателем (10 ч)

Произведение и частное степеней с натуральными показателями. Степень степени, произведения и дроби. Решение комбинаторных задач, формула перестановок.

Основная цель – выработать умение выполнять действия над степенями с натуральными показателями; научить применять правило умножения при решении комбинаторных задач.

Учащимся уже знакомо определение степени с натуральным показателем, и у них есть некоторый опыт преобразований выражений, содержащих степени, на основе определения. Основное содержание данной темы состоит в рассмотрении свойств степени и выполнении действий со степенями. Сформированные умения могут найти применение при выполнении заданий на сокращение дробей, числители и знаменатели которых – произведения, содержащие степени. В этой же теме продолжается обучение решению комбинаторных задач, в частности задач, решаемых на основе комбинаторного правила умножения. Дается специальное название одному из видов комбинаций – перестановки и рассматривается формула для вычисления числа перестановок. Это первая комбинаторная формула, сообщаемая учащимся.

Многочлены (17 ч)

Одночлены и многочлены. Сложение, вычитание и умножение многочленов. Формулысокращенного умножения: квадрат суммы И квадрат разности, куб суммы и куб разности. Основная цель – выработать умения выполнять действия с многочленами, применять формулы квадрата суммы и квадрата разности, куба суммы и куба разности для преобразования квадрата и куба двучлена в многочлен. Изучение данной темы опирается на знания, полученные при изучения темы «Введение в алгебру». Используются свойства алгебраических сумм и произведений, правила раскрытия скобок и приведения подобных слагаемых. Терминами «одночлен» и «многочлен» называются такие алгебраические выражения, с которыми учащиеся, по сути, уже имели дело. Основное внимание в

над многочленами сложения, вычитания, умножения, при этом подчеркивается следующий теоретический факт: сумму, разность и произведение многочленов всегда можно представить в виде многочлена. В ходе практической деятельности учащиеся должны выполнять задания комплексного

характера, предусматривающие выполнение нескольких действий. Однако следует иметь в виду, что на этом этапе

результатом овладение собственно алгоритмами является действий над многочленами, а преобразованием целых выражений будет уделено внимание еще в 8 классе. Овладение действиями с многочленами сопровождается развитием умений решать линейные уравнения и применять алгебраический метод решения текстовых задач

Разложение многочленов на множители (17ч)

Вынесение общего множителя за скобки. Способ группировки.

данной теме уделяется рассмотрению алгоритмов выполнения

Формула разности квадратов, формула суммы кубов и разности кубов. Решение уравнений с помощью разложения на множители.

Основная цель – Выработать умение выполнять разложение на

множители с помощью вынесения общего множителя за скобки и способом группировки, а также с применением формул сокращенного умножения.

Вопрос о разложении многочлена на множители дается в виде отдельной темы, в которую отнесено также знакомство с формулами разности квадратов, разности и суммы кубов. Рассматриваются некоторые специальные приемы преобразования многочленов, после которых становится возможным применение способа группировки: разбиение какого-то члена многочлена на два слагаемых и более, а также прием

«прибавить» - «вычесть».

Важно, чтобы формируемый аппарат нашел применение. Поэтому в ходе изучения темы целесообразно продолжить формирование умений сокращать дроби и рассмотреть приемы решения уравнений на основе равенства произведения нулю.

9. Частота и вероятность (6 ч)

Частота случайного события. Оценка вероятности случайного события по его частоте. Сложение вероятностей.

Основная цель – показать возможность оценивания вероятности случайного события по его частоте.

Особенностью предлагаемой методики является статистический подход к понятию вероятности: вероятность случайного события оценивается по его частоте при проведении достаточно большой серии экспериментов.

Такой подход требует реального проведения опытов в ходе учебного процесса. Так как для стабилизации частоты необходимо большое число экспериментов, то рекомендуется такая форма урока, как работа в малых группах. Процесс стабилизации частоты полезно иллюстрировать с помощью графика.

10. Повторение (7ч)

Содержание курса.

	V
$N_{\underline{0}}$	Раздел (число часов по программе)
Π/Π	`

1. Алгебраические дроби (23 ч)

Свойства степеней с целым показателем. Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями.

Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.

Решение рациональных уравнений. Переход от словесной формулировки соотношений между величинами к алгебраической. Решение текстовых задач алгебраическим способом.

Глава является естественным продолжением начатой в 7 классе линии целых и дробных выражений. Как и в 7 классе, изложение строится с опорой на приобретённый учащимися опыт работы с числами. Акцент делается на осознанное восприятие разнообразных приёмов преобразования дробных выражений. Изучение рациональных

выражений в соответствии с общей идеей развития курса по спирали будет продолжено в 9 классе.

Получает дальнейшее развитие начатая ещё в 5 классе линия, направленная на формирование вычислительной культуры учащихся. Включается достаточное число задач, требующих работы с формулами и предусматривающих применение калькулятора. Особенностью таких задач является то, что калькулятор в них выступает как инструментальное средство, облегчающее получение числовых результатов, в то время как основной смысл задачи заключается в поиске способа решения, сопоставлении имеющихся данных, формулировании тех или иных выводов, т. е. активизации интеллектуальной деятельности учащихся.

Виды рассматриваемых задач чрезвычайно разнообразны. В частности, продолжается решение задач на проценты.

2. Квадратные корни (18 ч)

Квадратный корень из числа. Корень третьей степени. Понятие о корне пой степени из числа. Нахождение приближенного значения корня с помощью калькулятора. Запись корней с помощью степени с дробным показателем.

Понятие об иррациональном числе. Иррациональность числа. Десятичные приближения иррациональных чисел.

Особенностью изучения темы «Квадратные корни» является более лаконичное и компактное изложение теоретических сведений о свойствах квадратных корней, связь с геометрией, усиление практического аспекта. В рамках этой темы учащиеся знакомятся с понятием кубического корня, и одновременно у них формируются начальные представления о корне п-й степени. В этой теме активно используется калькулятор для извлечения корней в ходе решения практических задач, а также для иллюстрации некоторых теоретических идей.

3. | Квадратные уравнения (20 ч)

Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета.. Решение уравнений, сводящихся к линейным и квадратным. Решение дробно-рациональных уравнений

Тема «Квадратные уравнения» содержит весь традиционный материал. В то же время имеются и некоторые отличия. Изучение теоремы Виета связывается с задачей разложения квадратного трёхчлена на множители. По ходу изучения темы постоянно включаются задания на решение уравнений высших степеней, активно используется метод подстановки. Завершается эта тема рассмотрением вопроса о нахождении целых корней уравнения. Продолжается решение текстовых задач, при этом именно здесь появляется естественная возможность поговорить об особенностях математических моделей, описывающих реальные ситуации.

4. Системы уравнений (19 ч)

Уравнение с двумя переменными; решение уравнения с двумя переменными. Система уравнений; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением.

Центральным содержанием главы «Системы уравнений» является изучение систем линейных уравнений. Начинается глава с рассмотрения вопроса о прямых на координатной плоскости: уравнение прямой и различные его формы, угловой коэффициент прямой, взаимное расположение прямых на плоскости. Вопрос об аналитических способах решения систем линейных уравнений не ограничивается системами с двумя переменными. Это позволяет сделать дальнейший шаг в идейном продвижении в овладении методами решения текстовых задач: отчётливо формулируется мысль о том, что при составлении системы уравнений часто бывает целесообразно вводить столько переменных, сколько неизвестных содержится в условии, и составлять соответствующее число уравнений.

5. Функции (14 ч)

Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем.

Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост; числовые функции, описывающие эти процессы. Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.

Изложение вопроса о функциях строится на базе опыта, приобретённого учащимися при изучении различных зависимостей между величинами, и большого количества графиков, знакомых восьмиклассникам. В главе вводится некоторый круг функциональных понятий, рассматриваются свойства функций. Основное внимание

рассматриваются свойства функций. Основное внимание уделяется функциям y = kx + b и y = k/x. Большое место занимают практические работы, вопросы и задачи прикладного и практического характера.

6. Вероятность и статистика (6 ч)

Представление данных в виде таблиц, диаграмм, графиков. Средние результатов измерений. Понятие о статистическом выводе на основе выборки.

Понятие и примеры случайных событий.

Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.

В этой главе расширяется круг статистических характеристик ряда данных. Здесь же продолжается формирование представлений о вероятности случайных событий: даётся классическое определение вероятности, а также решаются задачи, в которых вероятность вычисляется из геометрических соображений.

7. Повторение (5 ч)

$N_{\underline{0}}$	Раздел (число часов по программе)
π/	
П	

1. Неравенства. (18ч)

Действительные числа как бесконечные десятичные дроби. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств. Линейные неравенства с одной перем енной и их системы. Точность приближения, относительная то чность.

Основная цель — познакомить учащихся со свойствами числовых неравенств и их применением к решению задач (сравнение и оценка значений выражений, доказательство неравенств и др.); выработать умение решать линейные неравенства с одной переменной и их системы.

Изучение темы начинается с обобщения и систематизации знаний о действительных числах, повторения известных учащимся терминов: натуральные, целые, рациональные, действительные числа — и рассмотрения отношений между соответствующими числовыми множествами.

Свойства числовых неравенств иллюстрируются геометрически и подтверждаются числовыми примерами. Рассмотрение вопроса о решении линейных неравенств с одной переменной сопровождается введением понятий равносильных уравнений и неравенств, формулируются свойства равносильности уравнений и неравенств. Приобретенные учащимися умения получают развитие при решении систем линейных неравенств с одной переменной. Рассматривается вопрос о доказательстве неравенств. Учащиеся знакомятся с некоторыми приемами доказательства неравенств; система упражнений содержит значительное число заданий на применение аппарата неравенств.

2. Квадратичная функция (19ч)

Функция y = ax2 + bx + c и ее график. Свойства квадратичной функции: возрастание и убывание, сохранение знака на промежутке, наибольшее (наименьшее) значение. Решение неравенств второй степени с одной переменной.

Основная цель — познакомить учащихся с квадратичной функцией как с математической моделью, описывающей многие зависимости между реальными величинами; научить строить график квадратичной функции и читать по графику ее свойств сформировать умение использовать графические представлен для решения квадратных неравенств.

Изучение темы начинается с о бщего знако мства с ф ункцией у = ax2 + bx + c; рассматриваются готовые графики квадратичных функций и анализируются их особенности (наличие оси симметрии, вершины, направление ветвей, расположение по отношению к оси х), при этом активизируются общие сведения о функциях, известные учащимся из курса 8 класса; учащиеся учатся строить параболу по точкам с опорой на ее симметрию. Далее следует более детальное изучение свойств квадратичной функции, особенностей ее графика и приемов его построения. В связи с этим рассматривается перенос вдоль осей координат произвольных гра- фиков. Центральным моментом темы является доказательство того, что

график любой квадратичной функции y = ax2 + bx + c может быть получен с помощью сдвигов вдоль координатных осей параболы y = ax2. Теперь учащиеся по коэффициентам квадратного трехчлена ax2 + bx + c могут представить общий вид соответствующей параболы и вычислить координаты ее вершины.

В системе упражнений значительное место отводится задачам прикладного характера, которые решаются с опорой на графические представления.

3. Уравнения и системы уравнений (28ч)

Рациональные выражения. Допустимые значения переменных, входящих в алгебраические выражения. Тождество, доказательство тождеств. Решение целых и дробных уравнений с одной переменной. Примеры решения нелинейных систем уравнений с двумя переменными. Решение текстовых задач. Графическая интерпретация решения уравнений и систем уравнений.

Основная цель — систематизировать сведения о рациональных выражениях и уравнениях; познакомить учащихся с некоторыми приемами решения уравнений высших степеней, обучить решению дробных уравнений, развить умение решать системы нелинейных уравнений с двумя переменными, а также текстовые задачи; познакомить с применением графиков для исследования и решения систем уравнений с двумя переменными и уравнений с одной переменной.

В данной теме систематизируются, обобщаются и развиваются теоретические представления и практические умения учащихся, связанные с рациональными выражениями, уравнениями, системами уравнений. Уточняется известное из курса 7 класса понятие тождественного равенства двух рациональных выражений; его содержание раскрывается с двух позиций — алгебраической и функциональной. Вводится понятие тождества, обсуждаются приемы доказательства тождеств.

Значительное место в теме отводится решению уравнений с одной переменной. Систематизируются и углубляют знания, учащихся о целых уравнениях, основное внимание уделяется решению уравнений третьей и четвертой степени уже знакомыми учащимся приемами — разложением на множители и введением новой переменной. Продолжается решение систем уравнений, в том числе рассматриваются системы, в которых одно уравнение первой, а другое — второй степени, и примеры более сложных систем.

В заключение проводится графическое исследование уравнений с одной переменной. Графическая интерпретация алгебраических выражений, уравнений и систем широко используется при изложении материала всей темы.

4. Арифметическая и геометрическая прогрессии (18ч)

Арифметическая и геометрическая прогрессии. Формулы n – го члена и суммы n членов арифметической и геометрической прогрессий. Простые и сложные проценты.

Основная цель — расширить представления, учащихся о числовых изучить свойства арифметической последовательностях; геометрической прогрессий; развить умение решать задачи на проценты. В данной теме вводятся необходимые термины и символика, в результате чего основа для осознанного изучения числовых создается содержательная последовательностей, которые неоднократно встречались предыдущих темах курса. Введение понятий арифметической и геометрической прогрессий следует осуществлять на

основе рассмотрения примеров из реальной жизни. На конкретных: примерах вводятся понятия простых и сложных процентов, которые позволяют рассмотреть большое число практико-ориентированных задач.

5. Статистика и вероятность (9ч)

Генеральная совокупность и выборка. Ранжирование данных. Полигон частот. Интервальный ряд. Гистограмма. Выборочная дисперсия, среднее квадратичное отклонение.

Основная цель — сформировать представление о статистических исследованиях, обработке данных и интерпретации результатов.

В данной теме представлен завершающий фрагмент вероятностностатистической линии курса. В ней рассматриваются доступные учащимся примеры комплексных статистических исследований, в которых используются полученные ранее знания о случайных экспериментах, способах представления данных и статистических характеристиках.

6. Повторение (7ч)